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A cycle of investigations, related to the problem of the controllability of non-linear dynamical systems, is developed. Systems 
which have a mechanical nature (wheeled means of transportation, transport and machining systems, and manipulators) are 
considered. Controllability criteria are established for the general class of mechanical systems which may contain non-holonomic 
constraints; similar criteria were established previously for holonomic systems in [1--4]. The controllability conditions obtained 
have a clear physical meaning. For example, for the controllability of a manipulation robot it is necessary that the control forces 
should predominate over the other generalized forces (the weight forces, and the resistance forces due to the external medium), 
Predominance is necessary as regards the amplitude of the forces. Additional conditions are related to the properties of constraints 
imposed on the system. This essentially requires that the constraint relations allow of the possibility of an appropriate change 
in the coordinates and velocities of the mechanical system in the region investigated. © 2004 Elsevier Ltd. All rights reserved. 

1. O B J E C T  OF T H E  I N V E S T I G A T I O N  

The object of the investigation is dynamical systems, the motion of which are described by Lagrange 
equations of the second kind [5-7] 

g 

d OT OT = Qi + Mi + Ri, Ri = Z A~f~i (1.1) 
dt~qi ~qi sffi I 

N 

~,  fsi(q)ili = 0 (1.2) 
i = l  

Here and henceforth the subscripts take the following values: i, j = 1, 2 . . . . .  N; s = 1.2 . . . .  , g; 
r = g + l , g + 2  . . . . .  N. 

System (1.1), (1.2) describes the motion of many mechanical systems. It can describe the motion of 
holonomic systems in dependent coordinates, if, for some reasons, it is desirable to take into account 
the description of the constraints (1.2) in explicit form [5-7], for example, when the replacement of 
the initial generalized coordinates leads to a loss in clarity or expressiveness of the control problem in 
question or when the reactions of the constraints imposed are being investigated. System (1.1), (1.2) 
can also describe the motion of non-holonomic systems if relations (1.2) describe non-holonomic 
mechanical constraints. The topic under discussion is, primarily, systems with rolling: automobiles, trains, 
aircraft on a take-off strip, etc., and also electromechanical systems with sliding contacts [5-13]. 

We will use the following standard notation: qi and qi are the generalized coordinates and velocities 
of the system, N is the number of coordinates, Ri is the reaction of the constraint (1.2), As are Lagrange 
undetermined coefficients, and {Qi + Mi} are generalized forces. The quantities Mi are considered as 
control forces (controls), which are produced by the control devices of the system - the drives. The 
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q u a n t i t i e s  Qi = Qi(q, Cl, t) are determined by external forces, which act on the mechanical system. We 
will denote by T = T(q, el) the kinetic energy of the system 

N 
1 

T = =2 X aiY(q)gliglj 
i , j  ffi 1 

(1.3) 

The quantities aij are related to the mass distribution of the mechanical system (1.1) and characterize 
its inertial properties, The following inequalities, well known in mechanics, hold for the kinetic 
energy T 

N 

~.~lql2<T<~21ql 2, Iql2= ]~q~, Xp=cons t>O (1.4) 
i=1 

for any values of qi and qj. 
For a formal analysis of the controllability property of system (1.1) we will introduce the following 

assumptions regarding the properties of the object being investigated. We will assume that, in inequalities 
(1.4), 

0 < ~q < X 2 < 0- (1.5) 

The values of the force Qi in system (1.1) for all qi, dlj and t > t o (t o is a certain instant of time) will be 
assumed to be bounded: 

[Qi(q,  q, t)l -< hi, hi = const > 0 (1.6) 

The linear formulae (1.2) are assumed to be linearly independent 

rankl~,ll = g (1.7) 

This assumption is assumed to be natural in the dynamics of systems with non-holonomic constraints. 
We consider as the permissible controls in system (1.1) the time functions M(t) = {Ml(t) . . . . .  MN(t)}, 

the values of which for all t are bounded: 

[Mi(t)[  < H i, H i = eonst > 0 (1.8) 

We will denote the class of such functions by U = U(Hi! 6 
We will consider the functions of time q = q(t), t > t with absolutely continuous derivative as the 

solutions of system (1.1), (1.2). The functions Mi(t ) and Qi(q, gl, t) in this set of solutions are assumed 
to be summable in any finite time interval. The functions aik(q), 3aij(q)/~q, and )~k(q) are assumed to 
be continuous. The formal assumptions introduced are fairly natural [1-13]. 

2. F O R M U L A T I O N  OF THE P R O B L E M  

The property of controllability of systems of the form (1.1), (1.2) will be understood in Kalman's sense. 

Definition 1. System (1.1), (1.2) is said to be controllable in its state space { q l ,  . . .  , qN, ql  . . . . .  qN} 
in the class of permissible controls U, if, for arbitrary points S f = (qf gl f) and S e = (qe, gl e) of space, a 

f e certain permissible control M(t) ~ U exists, for which system (1.1), (1.2) can transfer from S to S in 
a certain finite time. 

The controllability conditions were obtained previously in [1-3] for holonomic mechanical systems. 
The constraints (1.2) are ignored, system (1.1), (1.2) 

d ~T 3T 
dt~gli ~qi Qi + Mi (2.1) 

will be such a system. The condition for system (2.1) to be controllable has the form 

H i > h i (2.2) 
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The numbers h i and Hi were introduced in relations (1.6) and (1.8). In other words, it is required that 
the controls Mi of the mechanical system should predominate over the generalized forces Qi in amplitude. 
Such conditions are regarded as natural. If the weight of the load exceeds the lifting power of the 
manipulator, it is obviously difficult to control such a system. 

Note that, if constraints (1.2) are holonomic, system (1.1), (1.2) can also be reduced to a system of 
type (2.1). The conditions for such a system to be controllable are similar to conditions (2.2). Note also 
that constraints (1.2) are holonomic if they can be reduced to the form of geometrical constraints. The 
point here is that certain systems of differential equations (1.2) can be integrated and its integrals can 
be written in the form of the relations ~f~i(q) = 0, which contain only coordinates of the system. 
Examples of constraints (1.2) exist when this is impossible (such constraints are called non-holonomic 
constraints). 

In general, system (1.1), (1.2) is not necessarily a holonomic mechanical system. For a non-holonomic 
system, the well-known criteria of controllability are not directly applicable. The problem considered 
in this paper is to obtain the conditions for mechanical systems of the form (1.1), (1.2) t obe  controllable 
in the class U of bounded controls. 

3. T H E  S U B S Y S T E M  OF C O N S T R A I N T S  

In investigating the problem of the controllability of system (1.1), (1.2), the properties of its subsystem 
(1.2), i.e. the subsystem describing the mechanical constraints, play an important role. These properties 
may essentially determine the possibility of controlling the initial system (1.1), (1.2). In fact, the subsystem 
of constraints (1.2) may contain an element, for example, of the form q l  = 0. In this case ql(t)  - qi(O), 
t > 0, and system (1.2) cannot be transferred to the point q~ of phase space, for which q~' ~ ql(0). 
Consequently, system (1.1), (1.2) is not controllable. This example is formal, but the relation 01 = 0 
corresponds to all the indicators for describing a certain mechanical constraint (this example is given 
only for simplicity). The overall aim of this paper is to draw attention to this kind of circumstance and 
to develop an appropriate method of investigating the controllability problem. 

Thus, we will consider the subsystem of constraints (1.2) 

N 

fsi(q)dli = O, s = 1,2 . . . . .  g (3.1) 
i = i  

as a certain independent system of differential equations. The state space of system (3.1) has the form 
{ql . . . . .  qN}, where N is the dimension of the space. In system (3.1) there are g equations, where 
N > g. The last inequality is a consequence of the natural assumption that the initial mechanical system 
has at least one degree of freedom, i.e. n ___ 1, where n = N - g .  

Hence, in system (3.1) the number of variables N is greater than the number of equationsg. Therefore, 
systems of the form (3.1) may possess the following feature: several solutions of system (3.1) can pass 
through one and the same point of state space {ql, --., qN} (see the specific example in Section 7). Let 
us say that different solutions qP(t) = (qP(t) . . . . .  qP(t)),  t > t I (p = 1, 2, ...) of system (3.1) can pass 
through a certain point s + = (q~-, . . . ,  q~), i.e. 

qP(t t) = s +, p = 1,2 . . . .  (3.2) 

Then, we can introduce the following set for the points s + 

Z(s  +, '~) = {ql(tl + x), q2(tl + "~) . . . .  } (3.3) 

The elements of this set are the points ql(tl  + x), q2(tl + x) . . . .  of the state space {ql, . . . ,  qN} of system 
(3.1). The set Z(s  ÷, "c) is similar to the attainability set, which has meaning for controllable dynamical 
systems [14, 15]. In this connection, we will introduce the following definition. 

Definition 2. The point s- = (q~, . . . ,  q~) of the state space {ql, . . . ,  qN} of system (3.1) will be said 
to be attainable from the point s ÷ = (q~-, . . . ,  q~) if a permissible trajectory q*(t) of motion of system 
(3.1) exists such that 0 _< x < 0% where q*(t 1) = s +, q*(t 1 + "0 = s. 

In Definition 2 we are essentially dealing with the following property of system (3.1). Suppose we 
are given two points, s ÷ and s-, for system (3.1). Suppose that, at a certain initial instant of time # ,  system 
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(3.1) is situated at the point s ÷, i.e. (ql(t 1) . . . .  , qN(tl)) = s ÷. Suppose also that, at a certain instant of 
time t = t I + 7:, the set (3.3) Z(s +, x) contains the point s-. If x < 0% the point s- can be attained from 
the point s +, by Definition 2. Hence, Definition 2 indicates the fact that certain points of the space 
{ql . . . . .  qN} can be connected by finite sections of the trajectory of system (3.1). It turns out that this 
fact is important later for analysing the property of controllability of the initial mechanical system. 

Definition 3. The functions of time q(t) = (ql(t) . . . . .  qN(t)), for which the derivatives ;tj(t) are 
continuous will be assumed to be permissible trajectories in Definition 2. 

The introduction of this class of permissible trajectories is due to the fact that it will be proposed 
later that the solutions q(t) of system (3.1) should be considered as solutions of initial system (1.1), 
(1.2). From this point of view not all solutions of system (3.1) will be of interest, but only fairly smooth 
ones. In particular, it is necessary here to take into account constraints (1.6) and (1.8), imposed on the 
controls and the generalized force ai  and Mi of the initial mechanical system. Hence, we will further 
consider those solutions q(t) of system (3.1) for which the derivatives gjj(t) are continuous. 

We will formulate the following proposition, which is the basis of our investigation of the property 
of controllability of the initial system (1.1), (1.2). 

The property o f  attainability. At point s- = +(q~, ... ,~/N) of the state space {ql . . . . .  qN} of system (311) 
is attainable from its arbitrary point s ÷ = (ql . . . .  , qN) in the class of permissible trajectories. 

An interesting example of system (3.1), which possesses the property of attainability is investigated 
in Section 7. It is clear intuitively that the property described is important for solving the problem 
of the controllability of the initial system (1.1), (1.2). Namely, suppose the subsystem of constraints 
(1.2) does not possess the property of attainability, i.e. suppose a certain point s- is not attainable 
from a certain point s ÷. Then system (1.1), (1.2) will not, in general, possess the property of 
controllability. 

4. BASIC RESULT 

Theorem 1. Suppose conditions (1.3)-(1.8) are satisfied for system (1.1), (1.2). Suppose we are given 
arbitrary constants Hi which satisfy the condition 

H i > h  i , 1 = 1 , 2  . . . . .  N (4.1) 

Suppose the property of attainability holds for subsystem (1.2) of system (1.1), (1.2). Then system (1.1), 
(1.2) is controllable in its phase space {ql, . . . ,  qN, q l  . . . . .  ON} in the class of controls U(Hi). 

The proof of Theorem 1 is given in Section 5. 
The meaning of Theorem 1 is that the mechanical system (1.1), (1.2) can be transferred to any point 

of the phase space of the system. It is of no importance where the system was situated at the initial 
instant of time. For this it is sufficient that the control forces Mi, I Mil ---H/of the system should 
predominate over the forces ai, [Qi[ <- hi, b y  condition (4.1). Theorem 1 was previously stated in [1, 
2] without taking into account the imposed constraints (1.2) (note that condition (4.1) is identical with 
the condition (2.2)). Unlike this, in Theorem 1 the controllability of a mechanical system is based on 
the proposition that these constraints are allowed. It is only necessary that, for the subsystem of 
constraints (1.2), the property of attainability should also be satisfied. In addition, we note the following. 
Suppose conditions (2.2) are satisfied for system (2.1), and it is controllable. Then system (2.1) remains 
controllable if constraints (1.2) are imposed on it. This will be so if the constraints possess the property 
of attainability. 

The question of how far condition (4.1) of Theorem 1 is from the necessary conditions is of interest. 
We will show that when condition (4.1) breaks down, system (1.1), (1.2) may be uncontrollable. Thus, 
suppose instead of conditions (4.1) the following conditions hold 

H i = h i (4.2) 

We will consider a special case of system (1.1), (1.2), where ai  = 0 and, consequently, h i = H i = O. 
Hence we have the relations J'(t) = 0, t ___ 0 (in deriving which one can take into account the proof 
of Lemma 1 given below). Consequently, system (1.1), (1.2) cannot be transferred to a point in phase 
space, where the generalized velocities of the system are fairly high. The system is therefore not 
controllable. 

The usefulness of Theorem 1 is illustrated by an example in Section 7. 
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5. P R O O F  OF T H E O R E M  1: R E D U C T I O N  TO T H E O R E M  2 AND 
T H E N  TO T H E O R E M  3 

The basis of the proof of Theorem 1 is the scheme developed by Pyatnitskii [1, 2]. 
Consider the system 

d ~T ~T 
dt~)dti Oqi = mi(t) + Ri' i = 1, 2 . . . . .  N, 

N 

~ , f s i ( q ) # i  = 0, s = 1,2 g 
i = 1  

(5.1) 

The initial system (1.1), (1.2) converts into it if the required controls Mi are chosen in the form 

Mi(t) = - Qi(q(t),  el(t), t) + mi(t) (5.2) 

The quantities mi(t ) will be considered as new controls, and we will introduce a class of such controls. 
Class u of the controls includes functions of time mi(t ) of the form (5.2), which satisfy the conditions 

[m,(t)[ _< H °, H ° = const > 0 (5.3) 

Suppose system (5.1) is controllable in the class u. We will show that the initial system (1.1), (1.2) is 
then controllable in the class U. 

In fact, suppose a certain control m*(t) exists which transfers system (5.1) from an arbitrary point S f 
to an arbitrary point S e in a certain finite time along a certain trajectory q = q*(t). Then, obviously, the 
control 

g * ( t )  = - Qi(q*(t),  dt*(t), t) + m*(t)  (5.4) 

will also transfer system (1.1), (1.2) from the point S f to the point S e in a finite time. 
Control (5.4) will belong to the class U. For this, we will choose positive numbers Hi in inequalities 

(5.3) from the condition 

H°i = H i - h  , (5.5) 

In addition, we will assume that relations (5.4) are satisfied when 

t > t o ( 5 . 6 )  

The last condition is related to the fact that we have taken (1.6) into account, which is satisfied for the 
initial system (1.1), (1.2). Hence, the assertion of Theorem 1 follows from the following assertion. 

Theorem 2. Suppose we are given an arbitrary system (5.1), which satisfies conditions (1.3)-(1.7). 
Suppose the property of attainability is satisfied for system (5.1). Suppose also that certain positive 
numbers ~ which define the class u(/~/) of permissible controls, are specified. Suppose we are given 
two arbitrary points, S f and S e, of the phase space of system (5.1). Then, a certain control from the class 
u exists, which when t > t o transfers system (5.1) from the points S f to point S e in a certain finite time. 

In a special case, Theorem 2 has the form of the following theorem. 

Theorem 3. Suppose we are given an arbitrary system (5.1), which satisfies conditions (1.3)-(1.8). 
Suppose the attainability property is satisfied for system (5.1). Suppose also that we are given certain 
positive number/-/~/. Suppose we are given an arbitrary point S f of the phase space of system (5.1), Then, 
a control from the class u(/-/~/) exists, which transfers system (5.1) from the point S f to the origin of 
coordinates S O = (0, 0) in a certain finite time. 

Theorem 2 is a corollary of Theorem 3. In fact, by Theorem 3 a control exists which transfers system 
(5.1) from S f to the origin of coordinates S O = (0, 0) in a certain finite time. The control which transfers 
the system from the origin of coordinates to the point S e also exists. 

In fact, in system (5.1) we change the direction of time, i.e. we make the replacement 

t = t I - 0 (5.7) 
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We then obtain the system 

N 

d ~T ~T = mi ( t  I _ O) + R i, E f s i ( q ) q l  = 0 (5 .8)  
dOOq'i Oqi i= l  

The expressions for the kinetic energy T and the reactions of the constraints are similar to expressions 
(1.3) and the second formula of (1.1), respectively, where q' = dq/dO. In (5.7) we have denoted the 
constant, to be determined, by t 1. System (5.8), like system (5.1), satisfies conditions (1.3)-(1.7) (with 
the same parameters ~1, ~2 and hi), and the attainability property holds for it. Hence, all the conditions 
of Theorem 3 are satisfied for system (5.8). 

This means that system (5.8) can be transferred from an arbitrary point S e to the origin of  coordinates 
S O in a certain finite time. We will denote the corresponding control from the class u by m1(0). It is then 
obvious that a control of the from m~l(t) = m~ (t 1 - t )  will transfer system (5.1) from the origin of coordinates 
to the point S e also in a finite time. 

We will show that the control m~l(t) will transfer system (5.1) from the point S o to the point S e when 
t > t °, which is required in Theorem 2. In order to show this, we choose the constant t I in (5.7) in an 
appropriate way. Namely, suppose system (5.1) when t = t o begins its motion from the point if, and at 
a certain instant of time t = t oo is incident on the point S °. Similarly, system (5.8) is incident from the 
point S e when 0 = 0 ° on the point S o at a certain instant of time 0 = 0 °°. We will put t I = t oo + 0 °° in 
Eq. (5.7). Then the control rot(0) will correspond to the segment [0 °, 0oo], and the control m~l(t) will 
correspond to the segment [t °°, t oo + (0 °° - 0°)]. Consequently, the control m11(t) begins to transfer 
system (5.1) from S O to S e at the required instant of time t = t oo _> t °. Thus, Theorem 2 follows from 
Theorem 3. 

6. P R O O F  OF T H E O R E M  3 

The proof of Theorem 3 rests on the following two main properties of mechanical systems of the form 
(5.1): (1) system (5.1) can be slowed down completely and transferred into the coordinate plane; 
(2) system (5.1) can be shifted from one point of the coordinate plane to another. 

In Fig. 1 the control mf stops system (5.1), and the control rn t° transfers it from a point in the coordinate 
plane to the origin of coordinates. 

The possibility of slowing down system (5.1) (as a result of the control m y) and the possibility of  
displacing system (5.1) from one point of the coordinate plane to another (by means of control rr?") 
are determined by the following lemmas. These lemmas complete the proof of Theorem 3. 

Lemma 1, Suppose the conditions of Theorem 3 are satisfied. Then a certain control m f of the class 
u exists, which transfers system (5.1) in a finite time from an arbitrary initial point S f (qf, 4f) to a 
certain point of the form S f° = (q/O, 0). 

Lemma 2. Suppose the conditions of Theorem 3 are satisfied. Then a certain control mf°(t) of the 
class u exists, which in a finite time transfers system (5.1) from an arbitrary point of the form 
s£O = (qfO, O) to the origin of coordinates S O = (0, 0). 

Proof o f  Lemma 1. Consider a mechanical system of the form 

N 

d O T  OT = _l_lOisign(dli)+Ri, ~ f s i L l  i = O, t>O (6.1) 
dtO(Ti Oqi i= l  

We convert mechanical system (5.1) into system (6.1) using the control 

ra i = mfi = - H  °sign(qi) (6.2) 

(this control is mfin Fig. 1). The controls (6.2) are permissible, i.e. they belong to the class u. In system 
(6.1) the initial conditions q(0) -- qf, ~(0) = ~f are arbitrary, in accordance with the conditions of 
Theorem 3. The lemma is true if the following relations holds for the motions of system (6.1) 

Iqi( '[)l ---- 0 ,  31;: 0 --< X < ~ (6.3) 
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kr s O 

q 

Fig. 1 

In fact, the following relations, well known in mechanics, are satisfied during the motions of system 
(6.1) 

N 

7" = E qi{mf + Ri} ( 6 . 4 )  

i = 1  

The following equation holds for the reactions R i at any instant of time 

N 

~,, qi Ri = 0 (6.5) 
i = 1  

In fact, it follows from the assumption of ideality of constraints imposed on system (6.1) that 

N 

8qi R i = 0 (6.6) 
i f f i l  

By definition, equality (6.6) holds for any vector (&/1, . . . ,  &/N), which satisfies the system 

N 

~, fsi~qi = 0 (6.7) 
i = i  

The v e c t o r  (t~l . . . .  , ON) in Eq. (6.5) satisfies system (6.7), since it satisfies the description of the constraints 
in system (6.1). Consequently, Eq. (6.6), i.e. Eq. (6.5), holds for the vector (ql . . . .  , ON). 

When relations (6.5) and (6.2) are taken into account, Eq. (6.4) can be written in the form 

= 

This yields the following relations 

N 

dli{-H ° sign (qi) } 
i - - I  

N 

i f f i l  

= const > 0 (6.8) 

where we have taken into account inequalities (1.4) and (1.5) and the inequality H/° > 0. The following 
relation holds for solutions of differential inequality (6.8) 

T(t) = 0, when t_> x, x = 2~-'0-)/~ (6.9) 

Hence, taking (1.4) into account, the required equalities (6.3) follow. 

Proof of Lemma 2. We will write the initial system (5.1) in the equivalent form of Magg's equations 
[5] 
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N 

~ .  ( L  i - m i ) b i r  - -  O, r = g + 1 . . . . .  m, 
i = 1  

N 
d ~T ~)T 

f s iq i  = O, Li = d t~q i  ~qi 
i=l 

We have denoted  certain functions bit = bir(q) by bit, where 

rank b r=s+l , ,v  ir i=l ,N = tl, n = N - g >  l 

(6.10) 

(6.11) 

Remarks. 1. To construct system (6.10), the original equations (5.1) will be written initially in the general form 
of d'Alembert-Lagrange equations 

N 

(L i -m i )Sq i  = 0 (6.12) 
i=l 

(we have taken into account the fact that constraints (1.2) are assumed to be ideal). We will further take into account 
the fact that the virtual displacements ~] i  in relation (6.12) satisfy g equations (6.7). Consequently, the virtual 
d i s p l a c e m e n t  ~qi can be expressed in terms of certain n = N - g  independent parameters e~ [5] 

N 

~qi = ~ birer 
r=g+l 

This enables Eqs (6.10) to be obtained from Eqs (6.12). 
2. The functions bi~ = bir(q) in system (6.10) can be constructed in explicit form as follows. Consider the system 

N N 

fsi(q)Lli = O, s= 1 . . . . .  g, ~ fri(q)gli = gr, r = g+ I . . . . .  N (6.13) 
i=l i = 1  

The first group of relations in system (6.13) is identical with the descriptions of constraints (1.2). The second group 
of relations is introduced in addition. Here/tr (r = g + 1, g + 2 . . . .  , N) are certain quantities (quasi-velocities in 
the corresponding system of Appell's equations). The relations of the second group define the functions 
fn(q) (r = (g + 1 . . . . .  N)), on which the following non-restrictive condition is imposed [5, 6] 

rankllfr,][~ =__ ,, N l,t¢ = N (6.14) 

3. An example of a specific choice of the functionsf~(q) is given in Section 7. The functions bir = bit(q) in system 
(6.10) can be connected with the functions fn(q) by the relation 

i= l ~¢ f i= I,N rankF = N (6.15) BE = E, B = Ilbiillj = i',,v, F = I] ijllj= ,,N, 

Where E is the identity matrix. 

L e m m a  2 follows f rom the following assertion: functions q* = q*( t )  and m f°  = m f ° ( t )  exist, such that  
q*(t) ,  0 < t ___ ~ < oo is the solution of  system (6.10) for the control  m = rn~(t), where 

I m f ° ( t ) l < H  °, i =  1,2 . . . . .  N, 0 < t < ' c  (6.16) 

q*(0)  = qf0, q*(0)  = 0, q*(X) = 0, 4"( 'c) = 0 

where  qfO is an arbitrary specified vector.  

(6.17) 

Proo fo f t he  assertion. A certain function q* = q*(t), 0 _< t _< "c will be a solution of system (6.10) for a certain 
control m f° = m/°(t),  if relations of the form 

N N 

E Li[q=q*(obir(q*)=- E mf°(t)bir(q*)' 
i=l i = 1  

r = g + l  .. . . .  N 
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hold as well as inequalities (6.16). These relations and inequalities hold if the inequalities 

N N 

Z I~,11~ = q.(olbir(q*)l < ~ H°ilbir(q*)[ ' 0 <- t <'¢ 
i= l i,= l 

or the inequalities 

IL,II~=q..)-<~°, O - t < X  

hold, which we will write in expanded form 

j~l aij~j+ ~ L'~qp 
rc3aq 

"= j, =1 
(1.11 2bqiJq, ,[ [q = ,.(,) _< /-~/ , 0_<t_<, (6.18) 

We will show that inequalities (6.18) are a consequence of the property of attainability for constraints, which 
ae assumed to hold in Theorem 3. 

In fact, according to the property of attainability, a certain function ql --_ ql(t ) exists, which satisfies the constraints 
(1.2) when 0 < t <_ xl. The function ql = q](t) also satisfies the specified initial conditions (6.17) of the form 

ql(O ) = qfO, ql('t'l) = 0 

where the functions q'~(t) are continuous. 
The following limits follow from the property of continuity of the function/~(t) in the interval 0 <_ t <_ x I 

[ql(t)[<-D°' k;")l-<°" k;")l-<°2' (6.19) 

i = 1 ,2  . . . . .  N,  O < t - < x l ;  D p = c o n s t > 0  

We will further take into account the fact that the functions aik(q) are continuous together with the derivatives 
(according to the assumptions of Theorem 3). Hence, the following limits exist in the region I q) I -< D° 

[aq(q')[ <d, Ioaq(q')/bqpl <_d, (6.20) 
i , j , p  = 1,2 . . . . .  N, d = const_>0 

We will consider the following function (Fig. 2) as the required function q* = q*(t) in inequalities (6.18) 

q * ( t )  = qt(~'t), y = c o n s t > 0 ,  O < t < X ,  x = "ctl~l (6.21) 

, 1 1 * 2 By construction, the function q (t), like q = q (t), is changed in the region (6.19) of the form I qj (t) I -< D .  Hence, 
for q* --- q*(t) limits of the form (6.20) hold. Then inequalities (6.18) follow from inequalities of the form 

N N 

~"a~#*(t ,[+ p~ [d+~d]l(1*(t,ll(1*(t,l<_H°i, 
j=, j, =l 

0 ~ t < x (6.22) 

The following expressions hold for the derivatives t~7(t ). 

(1*(t) d 1 
-- 1(17(')1-< 

(we have taken inequalities (6.19) into account). Similarly 

]#*(t) I <_ ¢ 0  2, 0 _< t _< x 

q/O 

O<_t<_x 

N ~ . ~ . . . . ~  --  -- -- x q;(t) 

q~(t) \ q _ -- ..- r 

(6.23) 

(6.24) 

Fig. 2 
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Taking relations (6.23) and (6.24) into account, the system of inequalities (6.22) follows from the system 

m m 

j j , p = l  

These inequalities hold if the number "/> 0 is chosen to be sufficiently small. Consequently, the function q*(t) 
satisfies the system of inequalities (6.18). In other words, q*(t) is the motion of system (6.10) (a corresponding 
control from the class u exists). 

Note, finally, that the function q*(t) in (6.21), as also qa(t), satisfies the initial conditions (6.17), since 

q*(0) = ql(0), q*(x) = qI(TX) = ql(Xl) = 0 

Moreover, the function q*(t) is the solution of the subsystem of constraints (1.2) of system (6.10), i.e. 

N 

• . d e f  
Zs(t) = ~'~fsi(q*(t)) (q*(t))mO, O<--t<Z (6.25) at 

i = l  

Identities (6.25) are established from the relations 

N 

IF, fsi(q ( ))T~(qi< )) 0 ~/t (6.26) 
i = l  

That is, from Eqs (6.26) we have 

zs(0/y) = 0, 0 < 0 < ~  I 

i.e. Eqs (6.25) follow. Hence we obtain the assertion. 

7. AN E X A M P L E  OF A C O N T R O L L A B L E  N O N - H O L O N O M I C  SYSTEM 

TO demonstrate the usefulness of the formal assertions presented above from the applied point of view, 
we will consider an example of a mechanical system (Fig. 3). We will establish that is controllable. 

The system shown in Fig. 3 is the simplest model of a wheeled means of motion (like an automobile). 
It contains a chassis and a rear bridge, and also a controllable front driving bridge. The inertial properties 
of the system are determined by the mass m and the moment of inertia J of the chassis and the rear 
bridge, and also by the moment of inertia I of the front bridge. The position of the front bridge is 
characterized by the angle b and is determined by the torque v. The front wheels are the driving wheels, 
i.e. a force u is applied to the front bridge. The quantities u and v are the controls. 

The equations of motion of this mechanical system can be written in the form of Lagrange equations 
of the first kind 

rn# = ucos(a + b) + Asina + B c o s a t g b  

my = usin(a + b) - A c o s a  + Bsina tgb  (7.1) 

Jii = L u s i n b -  BL, lb" = o 

def  

f = ~ s i n a - ~ c o s a  = O, F ~=f Yccosa tgb+~ps ina tgb -L( t  = 0 (7.2) 
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It is assumed that the system contains two constraints (7.2). The first relation of (7.2) reflects the 
assumption that the rear wheels do not slip in a direction along the axes of wheels, and the second reflects 
the similar assumption for the front wheels. A and B are Lagrange multipliers. To simplify the analysis 
we will assume here that the front bridge and the chassis have only a slight effect on one another (the 
mass and moment of inertia of the front bridge are small). It is also assumed that the centre of mass 
of the chassis is at the point (x, y), and J is the moment of inertia of the chassis about this point. 

An analogue of the above-mentioned property of attainability holds for the subsystem of constraints 
(7.2) of system (7.1), (7.2). 

Theorem A. For arbitrary points (x f, yf, a f) and (X e, ye, a e) of the region {x, y, a} of state space 
{x,y, a, b} of the subsystem of constraints (7.2), there is a certain trajectory {x*(t) . . . . .  b*(t)}, and also 
a finite instant of time x such that 

x*(O) = x f . . . . .  a*(0) = a f ,  x*(x)  = x e , . . . , a* (x )  = a e (7.3) 

IJc'*(t)l -< 0t,..., Ib*(t)l -< a ,  Ib*(t)l -< 13, 0 _< t < x (7.4) 

where (z > 0 and 0 < 13 < re/2 are arbitrary numbers specified in advance. 
In other words, the analogue of the property of attainability must be justified here, and not simply 

assumed, as was done above. 
The following analogue of Theorem 1 also holds. 

Theorem B. Suppose arbitrary constant Hi, which satisfy the condition 

H t>O, H 2>0 (7 .5)  

are specified. Then system (7.1)-(7.2) is controllable in the region {x, y, a, k, Y, ~i} of its phase space 
{x, y, a, b, k, 3~, ti, b} in the class of permissible controls of the form 

lu(t)[ < n l, IO(t)] < n 2 (7 .6)  

Remark. In Theorems A and B we do not consider the entire phase space of system (7.1), (7.2), but only that 
part of it which does not include the variable b. This is due to the following factors. In the problem of controlling 
a wheeled system (Fig. 3), the position b of the steering column essentially plays the role of the control. It is sufficient 
to change the variable b solely in a limited interval, for example, in the region I b I < re/2. Hence, from the applied 
point of view, it makes no sense to investigate the controllability of system (7.1), (7.2) over the whole phase space 
of the system. Note also that the conditions of Theorem 1 are also not satisfied for system (7.1), (7.2). In particular, 
the equations of the constraints (7.2) are not continuous, for example, when b = ~/2. This is the formal reason 
which determines the formulation of Theorems A and B. 

Proof o f  Theorem A.  In Theorem A the topic of discussion is the analogue of the property of 
attainability for the system of constraints (7.2). This property is essentially related to the property of 
controllability for controllable systems. Thus, we write system (7.2) in the form (6.13) 

= gcosa,  3~ = gsina, d = ~ tgb /L  (7.7) 

In system (7.7) the quantities ~ and b will be formally, considered as the control parameters (the controls). 
"f f f f e e e If system (7.7) can be transferred from the point s = (x, y ,  a ) to the point s = (x e, y ,  a ) as a result 

e f of certain control ~ and b, the point s of system (7.2) will be attainable from the point s .  

Lemma A. System (7.7) is controllable in its state space {x, y, a } in the class of permissible controls 
/t(t) and b(t) of the form 

Inl - ~'1, I tl Ibl -< 131, Ibl <- Ibl <- (7.8) 

where ~/p and lip are arbitrary specified constants, which satisfy the condition 

yp > O, 13p > O, [~l < x/2 (7.9) 

The proof of Lemma A is given below. 
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Obviously, number 7p and ~p in inequalities (7.9) exist such that inequalities (7.4) hold on the motion 
of system (7.7). Hence, it follows from Lemma A that the analogue of the property of attainability will 
hold for system (7.2), which is confirmed in Theorem A. 

The introduction of the class of controls (7.8) is due to the use of the property of controllability of 
system (7.7) to prove Theorem A. Thus, the properties of the controls £(t) and b(t) ,  obtained in Lemma 
A, must be taken into account henceforth when analysing the initial system (7.1), .(7.2). In particular, 
the function £(t) and b(t)  must satisfy these equations, and so their derivatives ~t and b must be bounded. 
Here we have also borne in mind constraints (7.6), imposed on the initial controls u and v. Hence, the 
quantities ~ and b in relations (7.8) are assumed to be bounded. 

P r o o f  o f  L e m m a  A. The motion of system (7.7) from the point s f to the point s e consists of three 
basic steps: (1) the system is displaced from the initial point d along the straight line 1 to a certain point 
s 1, (2) the system essentially turns by a specified angle a e and is incident on the point s 2, and (3) the 
system is displaced along straight line 3 to the final points s e. 

An example of the trajectory of motion of the system from the initial point s f = (x f, y f ,  a f)  to the 
specified points s e = (x e, ye, a e) is shown in Fig. 4. 

Asser t ion  A 1. No matter how the points s r and sl are arranged on the straight line 1, there are always 
permissible control ~l(t), bl(t) which transfer system (7,7) from s f to s I in a certain finite time tl. 

A similar assertion also holds for the step when the system is displaced from the point s 2 to the point 
s e (Fig. 4). Hence, the purpose of the second step in displacing system (7.7) along the curve 2 is essentially 
the transfer of the system from point s 1 to some point s 2 along the straight line 3. 

1 2 Asser t ion  A 2. No matter what the straight lines i and 3 are, points s and s will always exist on them, 
and there will also be permissible controls b2(t) and ~2(t) which transfer system (7.7) from s 1 to s 2 in a 
certain finite time t2. 

Hence, for the straight lines 1 and 3 we initially construct the points s I and s 2. Only then will system 
(7.7) transfer from s f to s 1, then to s 2 and finally to s e. Consequently, the assertion of Lemma A that it 
is possible so shift the system from s f to s e follows from Assertions A1 and A2. 

Assertions A1 and A2 are proved in the Appendix. 

The s c h e m e  o f  the p r o o f  o f  Theorem B. The proof follows the proof of Theorem 3 given above. We 
have established that system (7.1), (7.2) can be completely slowed down and shifted to the coordinate 
plane. Moreover, system (7.1), (7.2) can be displaced from one point of the coordinate plane to another 
(taking into account the assertion of Theorem A). 

For  stopping,  system (7.1), (7.2) !s written in the form of a system of Appell equations with quasi- 
velocities ~ = ~ cosa + 3~ sina and b [5, 6]. This system contains Eq. (7.7), and also the equations 

Jtg2b[  - J ~ b  2tgb2 + u lb" = 19 (7.10) 
m + --.~--j  = L c o s b  C-"~' 

By means of a control of the form 

V = -H2sign(b + e  I ~ s i g n b ) ,  e = const > 0  
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system (7.7), (7.10) is led into a mode of motion of the form b(t) = 0 [10]. In this case the first equation 
of system (7.10) takes the form it{m} = u. By means of the control u = - n  1 sign (it), system (7.7), 
(7.10) is completely stopped, i.e. the condition ~ = 0 is guaranteed (also in a finite time). 

Note that the stopping of the system described is achieved in a different way compared with the general 
case (Theorem 3). The point is that Eqs (7.1) and (7.2) are not a special case of systems of the general 
form (5.1) derived above. Thus, there is a considerable deficit of controls in the system (only one control 
u occurs in the first three equations of system (7.1), (7.2)). Moreover, the control u occurs in the equations 
with coefficients which can vanish. 

For displacement in the coordinate plane, system (7.1), (7.2) can be written in the form of Maggi's equations 

m(± 'cosa+ys ina)+J~i tgb /L  = ulcosb, Ib" = v, f = 0, F = 0 (7.11) 

To construct Eqs (7.11) we can take into account the similar transformation in the proof of Lemma 
2. In this connection, we note that the equations of the constraints (7.1) can be written in the expanded 
form (6.13), i.e. 

f = 0, F = 0, * c o s a + p s i n a  = ~r (7.12) 

Note also that Eqs (7.10) and (7.11), in particular, are constructed on the basis of Eqs (7.12). We 
note finally that system (7.1), (7.2) transforms into system (7.11) when the factors A and B are eliminated. 

Further, for system (7.11) we can establish the existence of the motion {x* (t), y* (t), a * (t), b* (t)} from 
the point (x f, yf,,a f) to the point (x e, ye, ae), which the corresponding controls allow: 

lu*(t)l < H  l, Iv*(t)l < H  2 

We have taken into account here the assertion of Theorem A. In particular, the corresponding 
numbers a > 0, I~ > 0 in inequalities (7.4) are defined for the specified numbers Hi > 0 under conditions 
(7.5) of Theorem B. 

8. A P P E N D I X  

Proof ofAssertion A1. The motion of system (7.7) will occur along a straight line from the specified points s f to the 
specified point s 1, if we use controls of the form ~l(t), (b)l(t), shown in Fig. 5. 

In fact, in this case we have from Eqs (7.7) 

a(t) = c o n s t  

x(t) = x(0) + cosal-l(t), y(t) = y(0) + sinaI-l(t), 

For the points J and s I (Fig. 4) relations (8.2) take the form 

t 

l-I(t) = Ig(y)dy 
0 

X f -~ X I "1- c o s a f l ' I i ( t l ) ,  y f  = y l  + s i n a f i - l l ( t l )  ' 

i 

Hi(t) = I~l(y)dy; t 1 = T+2~ 
0 

(8.1) 

(8.2) 

(8.3) 
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For the quantity l-Ii(Z + 2x), which satisfies (8.3), to exist, we will assume that 

cos a f ~ O, sin a f ~ 0 

This condition can always be ensured by rotating the system of coordinates. 
The following relation holds for the control/rl in Fig. 5 

l-ll(T+2x) = 711(x+T), 711 = const>0 

Hence, relations (8.3) take the form 

x f = x l + c o s a f T l l ( X + T  ), yY = y l + s i n a Y T H ( x + T  ) (8.4) 

We will require that the numbers 711, x and T additionally satisfy the conditions 

17,¢ 1-<72 (8.5) 

In this case the control/q will satisfy the admissibility conditions (7.8) of the controls (the control bl(t) --- 0 satisfies 
these conditions). It is obvious that the positive numbers 711, x and T, which satisfy system (8.5), exist. This means 
that the permissible control ~l(t) and bl(t) also exist. 

In the above discussions we implied that 

bl(0 ) = 0, nl(0) = 0 (8.6) 

In other words, we assumed that/t  f = 0, b f = 0, where/c f b f are the initial values of the controls at the initial 
f f f f N ndl point s = (x , y ,  a ). ote that these co "tions can be realized in the initial system (7.1), (7.2). In fact, according 

to the proof of Theorem B, system (7.1), (7.2) is completely stopped only when the displacement step in the 
coordinateplane is carried out (Theorem A and Lemma A1). Hence, the condition/c f = 0 will be satisfied. The 
condition/¢ = 0 may also be realized. Thus, the variable b satisfies the fourth equation of system (7.1), (7.2), which 
is independent of the other variables of the system. Hence, the position b = 0 can always be ensured. In this case 
the state of system (7.1), (7.2) changes, but this is unimportant for the proof of this assertion. 

Proof  o f  Assertion A2. Suppose we are given two non-parallel arbitrary straight lines 1 and 3. If the initial straight 
lines 1 and 3 are parallel, system (7.7) is first unrolled (the corresponding controls are similar to the controls b2(t) 

1 2 and ~2(t), see below). We will show the points s and s exist on the straight lines (Fig. 4), and that permissible 
1 2 controls b2(t) and/c2(t) also exist, which transfer system (7.7) from the point s to the point s in a certain finite 

time t2. 
Consider the rotation of system (7.7) by a specified angle 

a[---~ a e (8.7) 

where a f is the value of the angle a at the initial point s 1, and a e is the value of the angle at the final point s 2 
(Fig. 4). According to the last equation of system (7.7) its angular position varies as follows: 

t 

a(t)  = a(0) + L f f t t g b d y  (8.8) 
0 

For a f and a e this relation takes the form 

t 2 

a e 
= a y + LIfC2(t) tg(b2(t))dt  (8.9) 

I 

0 

where t2 is the time taken to carry out the manoeuvre (8.7). 
We will use the controls shown in Fig. 6 as the control/c2(t) and b2(t), which realize the objective (8.7). Here 

the control b2 only varies when/c 2 = 0, while n2 varies only when b2(t) = const. This enables us to simplify the 
expressions derived below. 

Taking the above features into account, relation (8.9) can be written in the forms 

t2 

ae = a f  +Ljg2at,------:---Itg~ll t - a e = a f + TtTil(xtg[311" " + T)) (8.10) 

0 

Note that, according to Fig. 6, it is assumed that/c2(0 ) = 0, b2(0) = 0. In other words, at the point s I the controls 
/h and bl take zero values. This is allowed since, according to Assertion A1, the equalities/el(t1) = 0, bl(tl) = 0 
hold and similar equalities for the derivatives. 
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We will show that the control ~2(t) and b2(t ) will satisfy the control admissibility conditions (7.8). To do this we 
seek the control bE(t ) (when t ~ [0, 2z1] ) in the form of a function, the derivative of which has the form 

b'2(t) = 1331, tE [0,1:1] , b'2(t) = -1331, tE ['gl, 2'~l], 1331 = const>0 

In this case 

b2(t ) = 1331 t, tE [0,'gl], b2(t) = 1331(21:1-t), tE ['gl, 2'[i] 

b2(t ) = 1331t2/2, t~  [0,1;1], b2(t ) = ~31(- 'g~+2~l t - t2 /2) ,  t ~  [Xl, 2~l] 

Hence it follows that 

b2(2Xl) = 1331'I~ 

Hence, the last expression in (8.10) takes the final form 

tg(1331Z21). . 
a e = a f +  -~ t ' / n tX+T))  (8.11) 

We will require that the numbers 1331, Xl, ~tll, x and T should additionally satisfy the conditions 

11331'17{1--<131 , 113 ,1_<13  (8.12) 

In this case the controls ~2(t) and b2(t) will satisfy the control admissibility conditions (7,8). Obviously, additional 
numbers 1331, xl, ~hl, x and T _> 0 exist, which satisfy system (8.11), (8.12). For example, the positive numbers 1331 
and xl can only be chosen from conditions (8.12). In this case the positive numbers 3'11. x and T > 0 ensure that 
the remaining conditions are satisfied. 

This means that permissible control ¢t2(t ) and b2(t ) exist for which system (7.7) is unrolled by an angle a e, according 
to relation (8.7). The control ~2(t) and b2(t ) considered essentially solve the initial problem of transferring system 
(7.7) from the point s ~ to the point s 2 in a certain finite time (Fig. 4). In fact, we will denote by 

A x = x l - x  2, A y = y l - y  z 

the change in the coordinates of system (7.7) in the time t 2 of its turning (8.9). The vector 

e = ( A x ,  A y )  

then defines the coordinates x 1, yl of the required position of the point s 1 = (x 1, y~, a f) on straight line 1 (Fig. 4). 
Assertion A2 is proved. 
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